
Enabling Advanced Chiplet and SiP Architectures: Materials, Interconnects, and Thermal Solutions.

SIITME 2025: 22nd-25th October, BRAŞOV, ROMANIA

Speaker:

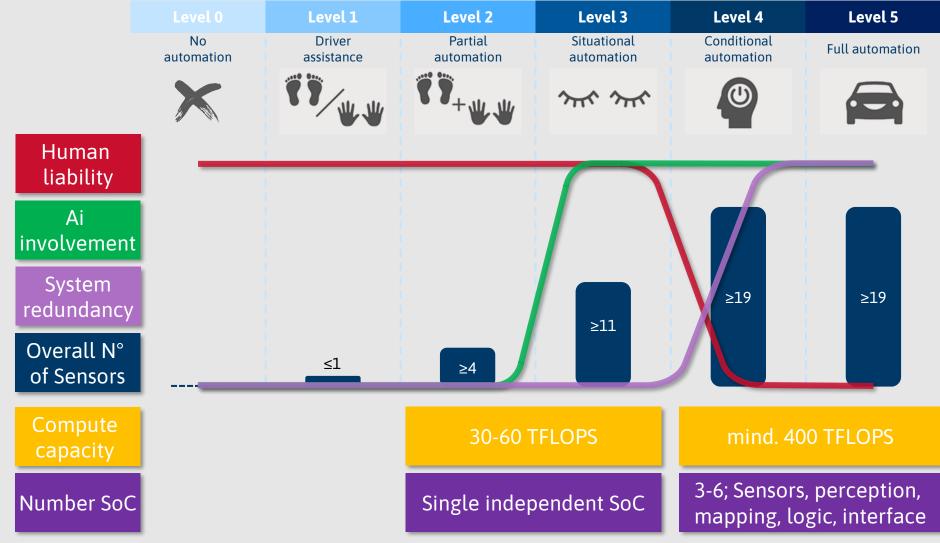
Martin Metzler, Director Technical Business Development Europe

The finalization of the pictures took 10 runs, with several adaptations on my and the background.

Standard GPU: NVIDIA A100; GPU-time: 30-60sec; Compute-capacity: 3-12PFLOP*s; Energy: ~2Wh

Evolution in the data center sector:

V100 (Volta) = 0,4 A100 (Ampere) = baseline H100 (Hopper) = 3x H200 (Hopper+) = 4x


2017 2020 2022

2024

Market Trend in Autonomous Driving

ADAS Levels (SAE J3016), Source: IDTechEX; Cloud factory and market assumption

Modulus Advanced Packaging Hotspot Management 5 👝 **Interposer Materials** Thermal Resistance (Rth) Interconnect Reliability **Thermocompression Bonding (TCB)** System-in-Package (SiP) **Chiplet Architecture Hybrid Bonding** Through-Silicon Via (TSV) 2 Redistribution Layer (RDL) Thermal Interface Material (TiM) Sustainability **Design-Technology Co-Optimization (DTCO)**

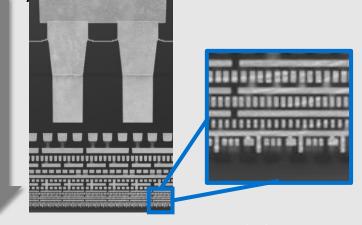
MacDermid Alpha

Moore's Law Micro-Bump

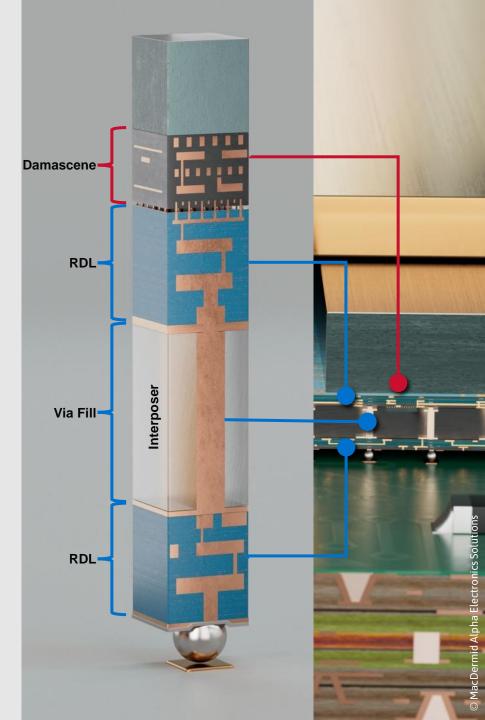
d Alpha Electronics Solutions

Advanced Packaging:

- 2.5D Integration of Dies
 - Side-by-side integration of multiple Dies
 - High-Density interconnects, Micro-Bumps
 - Silicon, Organic or Glas interposer
 - Through-Silicone-Vias (TSV) on Silicon Interposer
 - EMIB, Embedded Multi-DieInterconnectBridge (Intel)
- 3D Integration of Dies
 - Vertical integration, stacking of multiple Dies
 - TSV Stacking with hybrid bonding
- Fan-Out Packaging like FO-WLP or FO-PLP
 - Redistribution Layers (RDL) without a classical substrate
- System-in-Packages (SiP) as functional, final system
 - Combination of Dies, passive Components, MEMS and Sensors
- **Embedded** Die and Substrate integration
- **Hybrid Packages** as combination of 2.5D + 3D + SiP

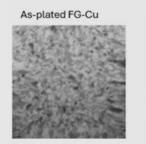

Drivers for Advanced Packaging:

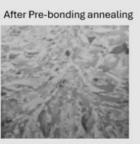
- Cost Efficiency
 - Higher yield in Die production
 - Multiple usage of Chiplets
- Higher Performance
 - Shorter signal paths
 - Higher signal integrity
 - Lower latency
- Higher Energy Density and Efficiency
- Improved Thermal management,
 high power/ energy densities can be controlled
- Application-Specific use of customized and optimized Technology (heterogeneous integration)


Damascene

- Where is it used? On-Chip-Level, IC Production
- Challenge and Development:
 - **Source Yole Group,** logic nodes below 5 nm are projected to account for over 20% of global wafer volume by 2027, with 2 nm entering full-scale production in 2025–2026
 - PVD-Processes struggle to achieve a uniform coverage of seed layers
 - New Chemistry Development are using a new alkaline system which enables electrochemical plating of such challenging structure without a seed layer

The Road to Finer Pitches From 130nm to 2nm

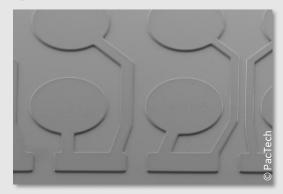


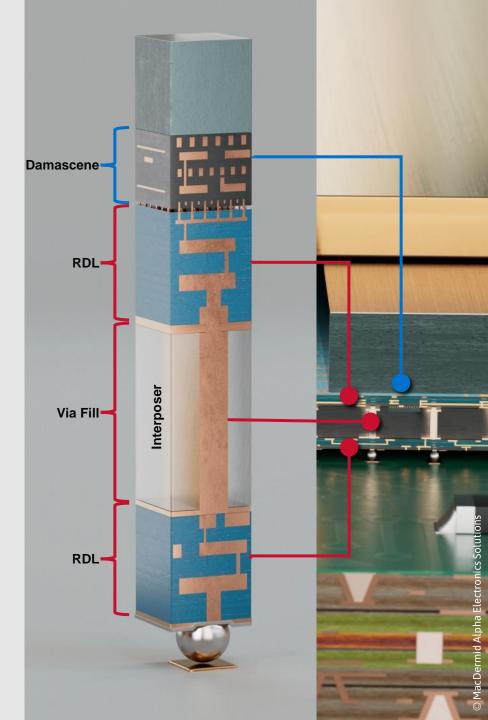

Hybrid Bonding

- Principal, Atomic diffusion between Cu-to-Cu Oxide
- Benefits:
 - Pitch <10µm, enabling up to 1Million connections per mm²
 - Low Resistance, High Reliability, High Energy Efficiency
 - No Induction-Effect, HF and High-Switching-Speed
- Used in:
 - 3D Stacking for Die-to-Die or Wafer-to-Wafer
 - Chiplet Integration on High Density Die-to-Die

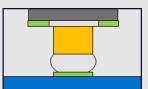
Challenges:

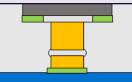
- Package alignment in Nano-Meter-Range
- Grain structure of copper \rightarrow Target fine grains, <0,2 μ m for processing

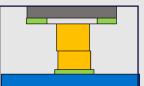

— 1 um


Random-Distribution-Layer (RDL) and Via-Filling Materials

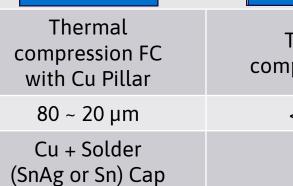
- Random-Distribution-Layer:
 - Where is it used? Packaging-Level, Post-Wafer
 - **Redirection** and **Rearrangement** of I/O contacts to connect Chip to package and substrate in µm-range

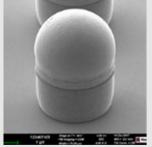


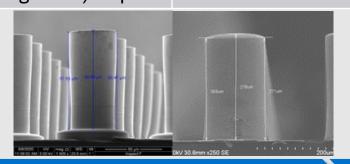

- Through-Silicon-Via:
 - Where is it used? Packaging Level, Mid-End
 - Used for vertical Die-to-Die Connections
 - Challenges, CTE-Mismatch Cu to Interposer material,
 Yield-improvement by using robust galvanic chemicals and processes, Costs



Bump, Micro-Bumps, Pillars




Bonding Method
Bump Pitch
Bump Metallurgy


C2 FC with Cu Pillar	
140 ~ 60 μm	
Cu + Solder (SnAg or Sn)	

Cu

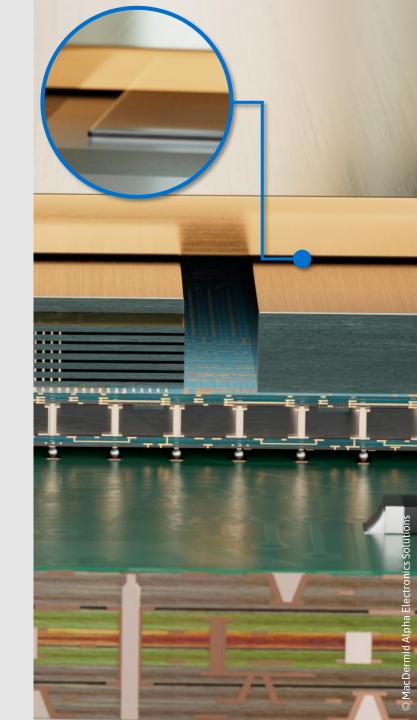
Finer pitch, Current carrying, Thermal performance, Reliability, Signal integrity

Low-Alpha Tin

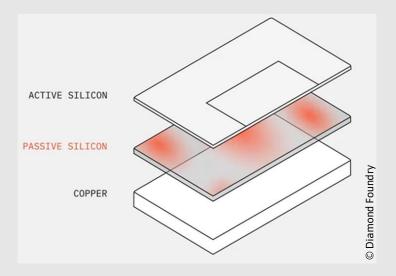
Challenge and Development:

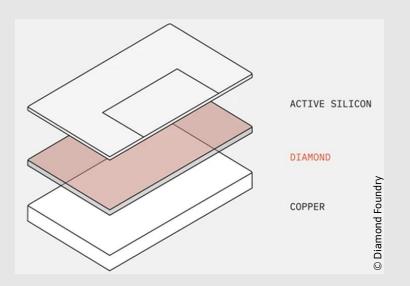
- High-density Packages can be sensitive to radiation exposure.
- Effects are Soft-Errors in Flip-Chip, SiP or Memory-Packages
- Low-Alpha Tin (Sn) can mitigate or eliminate this influence.
- Main source radioactive isotope Pb-210 with half-life-period of ~22years.
- Development of specific refining processes, controlled supply chain, material selection with aged tin, verification methods to test α-emmissions of the final product.
- Tin-variants
 - Standard Sn: 10-100 α/cm²·h
 - Low-Alpha Sn: 0.002-0.02 α/cm²·h
 - Ultra-Low-Alpha Sn: $<0.001 \,\alpha/\text{cm}^2\cdot\text{h}$

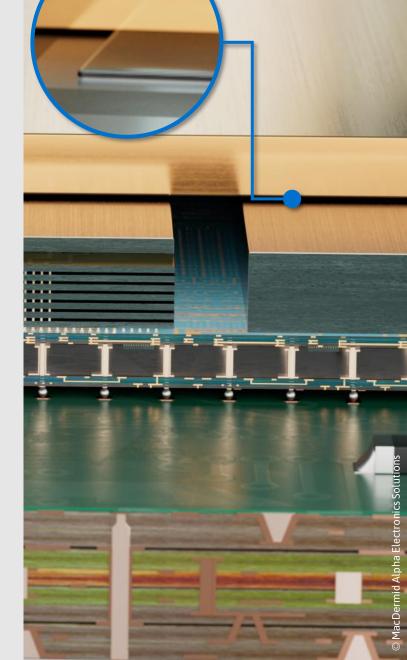
Benefits:


- Improvement of Signal-Integrity
- Increased Reliability in HPC, Automotive Safety and Memory-Systems
- Fulfillment **JEDEC-requirements** e.g. JESD97A, JESD89A

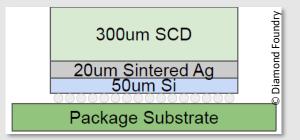
Enabling High Performance Applications

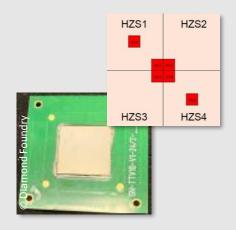

- Power Density:
 - Increase of functionality leads to higher heat output
 - Modern HPC- or Ai-Packages already reached >1W/mm²
 - Uneven power output reinforces hotspot effects
- Reliability:
 - Uneven Hotspot distribution creates temperature gradients within the packages
 - Increase of Mechanical Stresses and Degradation on the packages
- Challenges and Trends:
 - Improvement on Rth-Path for the complete package
 - Reduction of Interfaces or Improvement of their quality
 - Usage of New Materials, Spreader and Cooling solutions




Enabling High Performance Applications

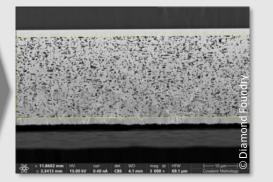
- Reinventing, Re-Designing, and using New Materials in this type of application
- Introduction of **Diamond Substrates** and **Silver Sintering** Technology
 - Increase of Thermal Conductivities (X-Y-Z) of Spreader and Interconnection Material
 - CTE-Adjustment





Enabling High Performance Applications

Test Vehicle and Setup

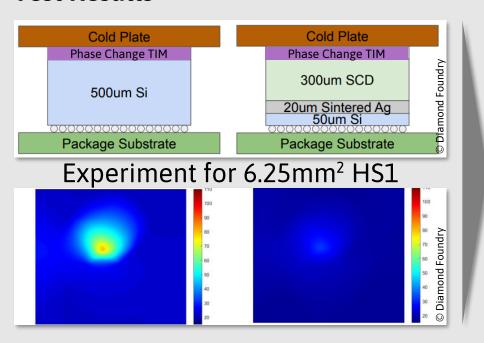


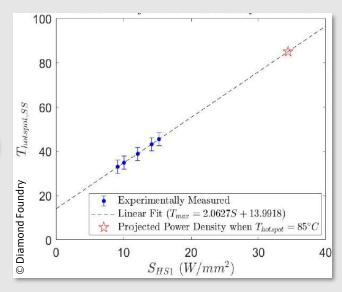
SCD grinding and wafer dicing

Ag sintering SCD2D

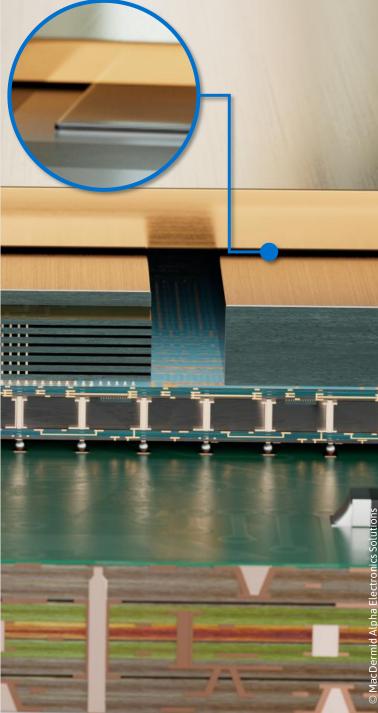
Assembling and eTest

- Low Sintering Pressure through the use of Nano-Scale-Particles
- Uniform and Co-Planar layer through the use of Films and Preforms

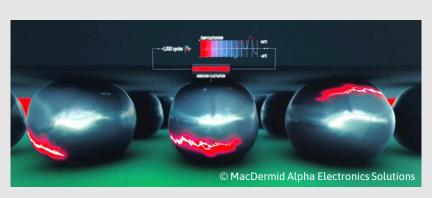


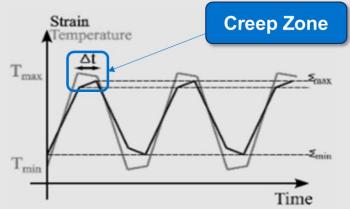


Enabling High Performance Applications


Test Results

- **52K Reduction** at 9.2 W/mm²
- Projected 3.8x Increase in Power Density @ 85°C
- Projected Power Density at 85°C of 34.4 W/mm²




Interconnection Material

Package Interaction with PCB Assembly

Challenges and Trends:

- The trend toward smaller structures, thinner packages, and higher I/O density is extending to other package forms e.g. BGAs.
- Reduced stand-off heights result in increased mechanical and thermal stress.

- New alloys are being developed to better tolerate the increased stresses.
- The focus is on modifying grain boundaries, diffusion behavior, and hardness characteristics.

Closing

- Moore's Law has driven semiconductor innovation for more than five decades.
 - Original formulation (1965): The number of transistors on an integrated circuit doubles approximately every 12 to 24 months, while the cost per function remains constant.
- Scaling is reaching its physical and economic limits.
- Transistor technologies are largely mature further miniaturization requires extreme investment.
- Innovation now happens at the system level.
 - Advanced Packaging, Chiplets, 2.5D/3 Integration, and SiP.
 - Materials, interconnects, and thermal management are becoming decisive performance enablers.
- Industry must remain technology-open
 - to explore non-traditional approaches and unconventional material combinations.
 - fostering progress beyond classical scaling boundaries.
- Future progress = smarter, cross-disciplinary integration not just smaller transistors.

Contact us

Martin Metzler

Director, Technical Business Development

martin.metzler@macdermidalpha.com

macdermidalpha.com

www.linkedin.com/in/martin-metzler-a73901291/

Thank you for your attention!

