# High Speed Signaling Challenges and Solutions for Electronic Packaging

Kemal Aygün, Intel Corporation

IEEE SIITME 2023

October 20, 2023

### Outline

- High Speed Signaling (HSS) Trends for Electronic Systems
- Advances in Package Technologies A HSS Perspective
- HSS Challenges and Solutions for Advanced Packaging
- Standardization for Package HSS
- Summary

# Outline

- High Speed Signaling (HSS) Trends for Electronic Systems
- Advances in Package Technologies HSS Perspective
- HSS Challenges and Solutions for Advanced Packaging
- Standardization for Package HSS
- Summary

### Input/Output (I/O) Interfaces for HSS

USB3.0

USB2.0

USB3.2 Gen

Source: Gigabyte

x2 (front)

USB3.0

USB2.0

Example Data Center Server System Connectivity Diagram SATA x14 Ο Ο 12-bay 3.5"/2.5" SATA/SAS 2-bay 2.5" SATA/SAS (rear - ---- MCIO 8i x8 ---- -- -PCIe5.0 x16 PCIe5.0 x16 PCIe5.0 x16 PCIe5.0 x16 8-Channel DDR5, 16 x DIMMs 8-Channel DDR5, 16 x DIMMs Speed up to 4800 MHz Speed up to 4800 MHz CPU0 CPU1 intel. intel. xeon xeon 4 x UPI 16 GT/s 4th Gen Intel® Xeon® 4th Gen Intel® Xeon® Scalable processors Scalable processors (LGA4677 Socket) (LGA4677 Socket) t t t PCIe5.0 x16 ò PCIe5.0 x16 1 x PCIe5.0 x16 FHHL slot 1 x PCIe5.0 x16 FHHL slot OCP 3.0 OCP 3.0 PCIe5.0 x16 PCIe5.0 x16 PCIe5.0 x16 PCIe5.0 x16 2 x PCIe5.0 x16 FHHL slots 2 x PCIe5.0 x16 FHHL slots PCle x1 G-SC Module PCH PCIe5.0 x8 1G LAN x2 Intel C741 PCle x1 Intel MDI ASPEED PCIe5.0 x8 chipset 1350-AM2 eSPI AST2600 2 x PCIe5.0 x8 LP slots SPI BMC MLAN TPM Slimline 4i : ::::.:: SPI 64MB SATAIII x16 Mini-DP SPI 64MB

• Communication between components in an electronic system are provided by I/O Interfaces

USB Hub

USB3.2 Gen1

x2

• Various standards (DDR, PCIe, etc.) exist for off- (and now also on-)package I/O interfaces

### **Off-Package HSS Trends**





Source: Ethernet Alliance

- Speeds for all off-package IO and memory interfaces are continuing to increase aggressively on a regular cadence
- Requires development of new interconnect technologies along with modeling, characterization, and design methodologies for these applications



Source: Keysight

# **On-Package HSS for Heterogenous Integration (HI)**



### **PCB Integration**

- Limited Interconnect Density  $\rightarrow$  Limited BW
- Long Interconnects → Increased Power
- Large Form Factor



### **On-Package Integration**

- Higher Bandwidth
- Lower Power & Latency
- Heterogeneous Integration of Multiple Nodes, Multiple IP, & Multiple Functions
- HI requires high bandwidth and low power & latency on-package connectivity
- Driving new interconnect technologies along with modeling, characterization, and design methodologies for these applications

# Outline

- High Speed Signaling (HSS) Trends for Electronic Systems
- Advances in Package Technologies HSS Perspective
- HSS Challenges and Solutions for Advanced Packaging
- Standardization for Package HSS
- Summary

### **Recent Trends in Electronic Packaging**



EMIB 55µm with 4<sup>th</sup> Gen Intel® Xeon®



Next Gen Foveros 36µm with Meteor Lake



Advanced electronic packages (CPU/GPU examples)

EMIB 55um + Foveros 36µm with Intel® Data Center GPU Max



- Traditional electronic package (CPU example)
  - Traditional electronic package:
    - $\rightarrow$  Few dies
    - $\rightarrow$  Few layers
    - $\rightarrow$  Small form factor
    - ightarrow Simple architecture



- Advanced electronic packages:
  - $\rightarrow$  Many dies (or *chiplets*)
  - ightarrow Large number of layers
  - ightarrow Large form factors
  - $\rightarrow$  Advanced architecture:
    - ightarrow Much finer line width/spacing
    - $\rightarrow\,$  Higher IO/mm and IO/mm^2
    - ightarrow 3D stacking

### Motivation for Advanced Architecture



*R. Mahajan et al., "Embedded Multi-die Interconnect Bridge (EMIB) -- A High Density, High Bandwidth Packaging Interconnect,"* 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, 2016, pp. 557-565

• To enable high bandwidth density connection between dies on a package with simple I/O circuits and low power consumption  $\rightarrow$  Works for 'short' lengths!

• An 'advanced package' also has to accommodate off-package HSS scaling requirements with features such as low loss materials, HSS-optimized design rules, etc.

# Advanced Packaging Examples (Silicon Interposer & EMIB)







W. Beyene, N. Juneja, Y. Hahm, R. Kollipara and J. Kim, "Signal and Power Integrity Analysis of High-Speed Links with Silicon Interposer," 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, 2017, pp. 1708-1715 (Reproduced with permission of W. Beyene)









Various EMIB Package Configurations: In (a) and (b) the total Die Area is Substantially Greater than Reticle Size (c) shows an irregular and asymmetric Layout

### **Additional Reading**



https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html

...

# Outline

- High Speed Signaling (HSS) Trends for Electronic Systems
- Advances in Package Technologies HSS Perspective
- HSS Challenges and Solutions for Advanced Packaging
- Standardization for Package HSS
- Summary

# Package HSS Modeling and Characterization Challenges

- As data rates increase and margins decrease, new phenomena that were insignificant in the past designs become significant
  - Frequency dependence of resistance losses and inductance for conductors
  - Non-ideal effects of the copper surface
  - Frequency dependence of dielectric permittivity and loss tangent
  - New geometrical scales with new materials and processes introduced by HI
- We need *validated models* that accurately predict these effects



# Package HSS Modeling-to-Measurement Correlation



C. S. Geyik et al., "Improved Package Modeling and Correlation Methodology for High Speed IO Design," 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, 2016, pp. 985-991

• Comprehensive flow for an improved package modeling and correlation methodology is essential for efficient electrical design

# Impact of Environmental Conditions



C. S. Geyik, Y. S. Mekonnen, Z. Zhang and K. Aygün, "Impact of Use Conditions on Dielectric and Conductor Material Models for High-Speed Package Interconnects," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 10, pp. 1942-1951, Oct. 2019

 Capturing impact of environmental conditions requires a temperature and humidity dependent modeling and characterization flow

### Impact of Environmental Conditions



C. S. Geyik, Y. S. Mekonnen, Z. Zhang and K. Aygün, "Impact of Use Conditions on Dielectric and Conductor Material Models for High-Speed Package Interconnects," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 10, pp. 1942-1951, Oct. 2019

$$K_{H}^{\text{new}}(T,\delta,sr,a) = 1 + \frac{3}{2}sr\left(1 + \frac{\delta}{a} + \frac{\delta^{2}}{2a^{2}}\right)^{-1} + c_{1}(T - T_{0})e^{-c_{2}\delta}$$

• Temperature dependent material properties and surface roughness models help further improve measurement to modeling correlation quality

### Impact of Measurement Uncertainties



C. S. Geyik, M. J. Hill, Z. Zhang, K. Aygün and J. T. Aberle, "Measurement Uncertainty Propagation in the Validation of High-Speed Interconnects," 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2020, pp. 1-3

• Generating high-fidelity package electrical models requires precise modeling & measurement methods, environmental control, and understanding of uncertainties for each measurement

### Accurate HSS Modeling of Package/PCB Interface: Socket



Proposed methodology for socket measurement-to-modeling correlation

S. Mondal, D. Athreya, E. Davies-Venn, Z. Zhang and K. Aygün, "An Improved Methodology for High Frequency Socket Performance Characterization," 2022 IEEE 31st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2022, pp. 1-3

### Accurate HSS modeling of Package/PCB Interface is critical to develop technology solutions for SERDES HSS

# Accurate HSS Modeling of Package/PCB Interface: BGA



J. Sun, Z. Qian, C. S. Geyik and K. Aygün, "Accurate BGA Package Solder Joint Modeling for High Speed SerDes Interfaces," 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2020, pp. 1-3



 Accurate HSS modeling of Package/PCB Interface is critical to develop technology solutions for SERDES HSS

# Accurate HSS Modeling for 2.5D Packages



\* Y. Chu, J. Yu, and Z. Qian, "Robust and efficient RLGC extraction for transmission line structures with periodic three-dimensional geometries," IEEE EMC&SI 2015

Z. Qian, J. Xie and K. Aygün, "Electrical Analysis of EMIB Packages," 2018 IEEE 27th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, USA, 2018

• Extra fine features in 2.5D packages require new interconnect modeling methodologies

# Outline

- High Speed Signaling (HSS) Trends for Electronic Systems
- Advances in Package Technologies HSS Perspective
- HSS Challenges and Solutions for Advanced Packaging
- Standardization for Package HSS
- Summary

### Motivation





### Align Industry around an open platform to enable chiplet based solutions

- Enables construction of SoCs that exceed maximum reticle size
  - Package becomes new System-on-a-Chip (SoC) with same dies (Scale Up)
- Reduces time-to-solution (e.g., enables die reuse)
- Lowers portfolio cost (product & project)
  - Enables optimal process technologies
  - Smaller (better yield)
  - Reduces IP porting costs
  - Lowers product SKU cost
- Enables a customizable, standard-based product for specific use cases (bespoke solutions)
- Scales innovation (manufacturing and process locked IPs)

### Bandwidth Performance Target of UCIe



Shoreline Bandwidth Density (GBps/mm)

#### IEEE Heterogeneous Integration Roadmap

| Generation Number <sup>10</sup> →                          |                                            |     | 2   | 3    | 4    | 5    |
|------------------------------------------------------------|--------------------------------------------|-----|-----|------|------|------|
| Raw Linear Bandwidth Density (GBps/mm) <sup>11,12,13</sup> |                                            |     | 250 | 500  | 1000 | 2000 |
| Package Technology                                         | Minimum Bump Pitch (µm)                    | 55  | 50  | 40   | 35   | 30   |
|                                                            | Linear Escape Density (IO/mm)14            | 500 | 667 | 1000 | 1500 | 2000 |
|                                                            | Areal Escape Density (IO/mm <sup>2</sup> ) | 331 | 400 | 625  | 816  | 1111 |
| Signaling Speed<br>(Gbps) <sup>15</sup>                    |                                            | 2   | 3   | 4    | 5.33 | 8    |

Table 4: Physical IO Scaling Roadmap 2D and Enhanced-2D Architectures that use Solder based Interconnects

| Generation Number →                    |                                            |            | 2          | 3            | 4            | 5         |
|----------------------------------------|--------------------------------------------|------------|------------|--------------|--------------|-----------|
| Raw Linear Bandwidth Density (GBps/mm) |                                            | 125        | 250        | 500          | 1000         | 2000      |
| Package Technology                     | Minimum Bump Pitch (µm) <sup>16</sup>      | 55         | 40         | 30           | 20           | 10        |
|                                        | Linear Escape Density (IO/mm)              | 500        | 667        | 1000         | 2000         | 4000      |
|                                        | Areal Escape Density (IO/mm <sup>2</sup> ) | 331        | 625        | 1111         | 2500         | 10000     |
| Signaling Speed (Gbps)                 |                                            | 2          | 3          | 4            | 4            | 4         |
| Table 5: Physical IO Scaling           | Roadman for 2D and Enhanced-2D Arc         | hitectures | that use h | oth solder i | nd hybrid ii | terconnec |

#### UCIe 1.0: Characteristics and Key Metrics

| CHARACTERISTICS                     | STANDARD<br>PACKAGE                | ADVANCED<br>PACKAGE | COMMENTS                                                                |  |  |
|-------------------------------------|------------------------------------|---------------------|-------------------------------------------------------------------------|--|--|
| Data Rate (GT/s)                    | a Rate (GT/s) 4, 8, 12, 16, 24, 32 |                     | Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device) |  |  |
| Width (each cluster)                | 16                                 | 64                  | Width degradation in Standard, spare lanes in Advanced                  |  |  |
| Bump Pitch (um)                     | 100 - 130                          | 25 - 55             | Interoperate across bump pitches in each package type across nodes      |  |  |
| Channel Reach (mm)                  | <= 25                              | <=2                 |                                                                         |  |  |
|                                     |                                    |                     |                                                                         |  |  |
| KPIS / TARGET FOR<br>KEY METRICS    | STANDARD<br>PACKAGE                | ADVANCED<br>PACKAGE | COMMENTS                                                                |  |  |
| B/W Shoreline (GB/s/mm)             | 28 - 224                           | 165 - 1317          | Conservatively estimated: AP: 45u; Standard: 110u; Proportionate to     |  |  |
| B/W Density (GB/s/mm <sup>2</sup> ) | 22-125                             | 188-1350            | data rate (4G – 32G)                                                    |  |  |
| Power Efficiency target (pJ/b)      | 0.5                                | 0.25                |                                                                         |  |  |
| Low-power entry/exit laten          | icy 0.5ns <=16G, 0.5               | -1ns >=24G          | Power savings estimated at $>= 85\%$                                    |  |  |
| Latency (Tx + Rx)                   | < 2ns                              |                     | Includes D2D Adapter and PHY (FDI to bump and back)                     |  |  |
| Reliability (FIT)                   | 0 < FIT (Failure I                 | n Time) << 1        | FIT: #failures in a billion hours (expecting ~1E-10) w/ UCIe Flit Mode  |  |  |

### Significant bandwidth density scaling via standard and advanced packaging

# Packaging Technologies supported by UCIe



### UCIe supports various packaging technologies

D. Das Sharma, G. Pasdast, Z. Qian and K. Aygun, "Universal Chiplet Interconnect Express (UCIe): An Open Industry Standard for Innovations With Chiplets at Package Level," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 9, pp. 1423-1431, Sept. 2022.

# **Reference Standard & Advanced Channel Solutions**







A 224 GB/s/mm organic channel UCIe-S solution is demonstrated





### A 658 GB/s/mm EMIB channel UCIe-A solution is demonstrated

D. Das Sharma, G. Pasdast, Z. Qian and K. Aygun, "Universal Chiplet Interconnect Express (UCIe): An Open Industry Standard for Innovations With Chiplets at Package Level," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 9, pp. 1423-1431, Sept. 2022.

# Diversal Chiplet 120+ Members...

UCle<sup>™</sup> Board Members



AMDI arm \* ASE GROUP Google Cloud intel. Meta



Imec

JCET

· LG

Innosilicon

Keysiaht

Kiwimoore

Lightmatter

Mercedes-Benz

M2 Semi

Macronix

Microchip

Marvell

Micron

Juniper Networks



#### UCle<sup>™</sup> Contributor Members

- Achronix
- Advantest
- AkroStar
- Alchip
- Alphawave Semi
- Amkor Technology
- Ampere
- Analog Devices
- AP Memory
- Applied Materials
- Arteris IP
- Astera Labs
- Ayar Labs Beijing Stream Computing

 Cadence Credo

Broadcom

Blue Cheetah

Brite Semiconductor

- Ecarx
- Eliyan

Bosch

 Ericsson eTopus

Huixi Rhino

IBM

- Futurewei Technologies
- Global Foundries
- Global Unichip Corporation
  - - MediaTek

- National Institute of Advanced Industrial
- Science and Technology Neuron IP
- Physim
- Oualitas Semiconductor
- Point2Tech
- proteanTecs
- Rivos
- Semitronix
- Shanghai UniVista
- Siemens
- Silicon Precision Industries
- SK Hynix
- SkyeChip Socionext

- Synopsys Tenstorrent
- Teradyne
- Tonafu Microelectronics
- University of New Hampshire InterOperability Laboratory
- Xi'an UniIC Semiconductors

- Zero ASIC
- Zentel

intel innovation

Property of Universal Chiplet Interconnect Express™ (UCle™) as of September 2023

- Truechip

  - UNISOC
  - Veri Silicon
  - · Winbond
  - Xpeedic

# **IEEE EPS Conferences**

#### **EPEPS 2023**

#### October 15<sup>th</sup> to 18<sup>th</sup>, 2023, Milpitas, CA

The Design and Analysis Frontier for Electronic Packaging

32<sup>nd</sup> Conference on Electrical Performance of Electronic Packaging and Systems



2023 EPEPS CONFERENCE

**OCTOBER** 15-18, 2023

issues in electrical modeling, analysis and design of electronic interconnections

EPEPS is the premier international conference on advanced and emerging

packages and systems. It also focuses on new methodologies and design

high-speed designs. EPEPS is jointly sponsored by the IEEE Electronics Packaging Society, IEEE Microwave Theory and Techniques Society, and IEEE

techniques for evaluating and ensuring signal, power and thermal integrity in

#### Call for Papers

Attend Conference

2022 Conference Program Paper Submission

#### Registration

Keynotes, Invited & Tutorial Presentations

Sponsorships/Exhibits

Awards

EPEPS Logo

Contact Us

**EPEPS** Committees

**EPEPS** Network

### http://www.epeps.org/

https://www.linkedin.com/groups/86343/

Antenna and Propagation Society

PLATINUM SPONSORS

GOLD SPONSORS

SILVER SPONSORS



### SIEMENS

XPEEDIC

cādence



#### https://spi2024.av.it.pt/





### http://www.edaps.org/



Denver, Colorado, May 28 - 31, 2024

|                         | PROGRAM           | INFO                                                       | DEV. COURSES                  | & FAQ'S                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------------------|-------------------|------------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 990/7-15                |                   |                                                            |                               |                                      | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 74th                    | ECTC A            | ostract Su                                                 | bmission is                   | now open!                            | and the second s |  |  |  |
|                         | the second for    |                                                            |                               |                                      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                         |                   | A                                                          |                               |                                      | Next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                         |                   |                                                            |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                         |                   |                                                            |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                         |                   |                                                            |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| A State And A State And |                   |                                                            |                               |                                      | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| s addition              | The Electronic Co | omponents and Technology                                   | Conference (ECTC) is the prer | nier international event that brings | together the best in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                         | packaging, comp   | onents and microelectronic                                 | systems science, technology a | nd education in an environment of    | cooperation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                         | 73rd ECTC         | 73rd ECTC Thank You Latter   Subscribe to our mailing list |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                         | Tota Abete        | ECTC Abstract Submission is now apoil Son Author Info      |                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                         | ECTC ADSU         | act submission is                                          | now open: <u>see Autn</u>     | <u>or mio</u> .                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                         |                   |                                                            |                               |                                      | Read More >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

### https://www.ectc.net/

#### Multiple IEEE EPS conferences focused on electrical analysis of packaging and systems

# IEEE EPS TC-EDMS Packaging Benchmarking Suite



### Packaging Benchmark Suite

The Packaging Benchmark Suite by IEEE Electronics Packaging Society (EPS) Technical Committee on Electrical Design, Modeling and Simulation (TC-EDMS) aims to provide information about electromagnetic, electrical and circuit modeling and simulation problems encountered and the computational methods used when designing, analyzing, and developing electronic packages. As a result of advances in computer hardware/software infrastructure and computational electromagnetics, today, a large (and expanding) set of methods can be used to evaluate the electromagnetic performance of electronic packages. Indeed, a variety of commercial, freeware, and academic simulation tools are commonly used in electrical packaging.

Publicly available verification, validation, and performance benchmarks like the IEEE EPS TC-EDMS Packaging Benchmark suite can

- help systematically combat the problem of the ubiquity of error
- inform the public as well as researchers and practitioners in the field about open problems and the state of the art solution methods
- · lower barriers to entry for new researchers/methods
- reduce importance of subjective factors when judging simulation methods
- increase the credibility of the results obtained and claims made by computational scientists and engineers

https://packagingbenchmarks.org/



• Benchmark problems helping the research community to develop new methods and tools

# Summary

- Semiconductor packaging is experiencing an accelerated pace of innovation fueled by emerging electronic system connectivity and heterogeneous integration demands
- Novel advanced packaging architectures provide new opportunities to improve high-speed signaling for short reach interconnects
- These new technologies need to include features to enable also high-speed signaling for off-package long reach interconnects
- Validated modeling methodologies & collaterals are key for both existing and emerging package and system designs
- Emerging standards such UCIe are helping the industry with further acceleration of adoption of heterogenous integration architectures