

How to fullfill reliability demands for future electronic assemblies

• Vladimír Sítko

• Short CV of presenting author

Vladimír Sítko is a founder and managing director of PBT Works s.r.o, a recognized manufacturer of cleaning systems for electronic assemblies, stencil, and microelectronic applications.

In 90-ties, he founded an SMT process machines and materials supply and consulting service company. At the same time, he was starting the business with development, design, and manufacturing machines for PCBA and maintenance cleaning, which is now running under PBT Works s.r.o.

He sets concepts of PBT cleaning machines and process optimization methods. He is also working on the development of new measuring instruments for cleaning parameters monitoring and performance enhancements. He is an owner or co-owner of several patents.

IEEE 26th International Symposium for Design and Technology in Electronic Packaging, 21st - 24th of October - ONLINE/LIVE

SITME 2020

Agenda

- Quo vadis microelectronic ?
- What does mean a NO clean soldering for reliability ?
- How clean is clean ? Qualification of cleaning process
- Optical visualisation of cleaning powerful tool for process development
- Requirements on cleaning process equipment today and in the future

Main development tendencies in electronics

- automotive revolution
- Electro- mobility
- Autonomous vehicles

SOURCE: ROSKILL & UBS ESTIMATES

Reliability and lifetime requirements

Automotive Lifetime Requirements Today		
Lifetime	15 Years	
Operation Time	10.000 Hours	
Mileage	300.000 km	
E-Mobility and Lifetime Requirements		
Driving Operation	~8.000 Hours	1.5 hrs / day, 15 years
Charging Operation	~30.000 Hours	
Off-Grid Parking	~92.000 Hours	
Autonomous Driving		
Driving Operation	121.000 Hours	22.5 hrs / day, 15 years

© RESRI Group, Institute of Microelectronic Systems (IMS), Leibniz Universität Hannover

Test conditions today:

car mission profiles are statistically measured (family, taxi, business,etc.) testing according to mission profiles with all measurements Qualification takes several months (ussualy 6-9 months) Long lifetimes & high reliability requires CLEANING

Main development tendencies in electronics communication revolution

- 5G communcation
- IoT
- Requirements on short response time using high frequencies
- 4G 20-30ms
- 5G 4-5ms

- **Compact HF assemblies**
- BTC components, very small chips
- **High signal fidelity requires CLEANING**

- Low cost packages , but used for high reliable applications
- Short signal paths Bottom terminations bad degassing of flux residues
- Saving on component bring extra costs at assembly

Combination of chips under BGA

• High frequency

- Low inductance capacitors
- Low inductance chip periphery
- Bad for cleaning !

Intel

New forms of chips are comming

- Inverse chip format resistors
 - Good for heat disspation
 - Challenge for cleaning !

• Three-terminal MLCC

- Low inductance capacitors
- Good for noise suppression
- Challenge for cleaning !

2-Temination type ESL: approx. 200~300pH (1005 size)

Low ESL type (Flip type) ESL: approx. 60~100pH (0510 size)

Low ESL type (3-Temination type) ESL: approx. 20~30pH (1005 size)

Point Main development tendencies in electronics - niniaturization

- Sensors, medical implantable electronics, modules
- Assembly before assembly on boards !

All these assemblies must be cleaned (before packaging)

NO clean technology

Best resin - highly dense (low vapor penetration) But: hard, brittle (easy to crack with temperature changes)

Releases active ionic contamination

Positive test on carboxylic radicals with ZESTRON Flux Test (blue discoloration)

In Nineties (~ 1990)

Today

Electrochemical corrosion

Bottom terminated components – cubic flux volumes

The termal lug contains surpluss organic material Outgassing is difficult

Mobility of ions under BTC is higher!

Good Outgasing is a key for good cleanability

Obstacles in outgasing lowers the insulation resistance. Reason is higher ion mobility in such residues

Solder joint covered by Glass

Free surface of Solder joint

SIR test of samples

MacDermid Alpha Karen Tellefsen SMTAI October 2020

(By Mark Mc Mean Magnalytics USA – STI substrates by PBT Works CZ October 2020)

(By Mike Bixenmann Magnalytics USA October 2020)

pads

Cleaning for reliability how to judge the ballance cost/ profit

Reasons for cleaning

- Real: assuring reliability ionic, organic cleanlinnes high SIR
 - Proces uniformity and repeatibility
 - Logging process parameters, traceability
 - "expensive" and "complex" equipment
 - Need of permanent process validation tool
 - Process qualification before real start
- **Cosmetic**: optical cleanlinnes to make product nice
 - Process uniformity and repeatibility not very important
 - Cheap equipment
 - Process ", validation" by naked eye
 - Process qualification normally not performed

Cleaning for reliability how to judge the ballance cost/ profit

Reasons for cleaning

- **Real:** assuring reliability ionic, organic cleanlinnes high SIR
 - Proces uniformity and repeatibility
 - Logging process parameters, traceability
 - *"* expensive" and *"* complex" equipment
 - Need of permanent process validation tool
 - Process qualification before real start

Cosmetic: optical cleanlinnes – to make product nice

- Process uniformity and repeatibility not very important
- Cheap equipment
- Process ", validation" by naked eye
- Producing scrap for money Process qualification normally not performed

Cleaning process Qualification IPC J-STD 001H 8.1 (Oct.2020)

Objective evidence

- Historically proved reliability is a valid evidence
- Shortened function test in harsh conditions
 - (moisture, salt, water, heat cycling etc.)
- Non direct evidence (not only one method is enough)
 - SIR measuring *electrochemistry*
 - IC (Ion Chromatography)
 - Optical (check of residues , inclusive under components) optics

chemistry

Cleaning Process qualification

SIP

opticalinspection

SIR testing – J- STD 004

	SIR	
S	J-STD-004A	J-STD-004B
Temp/Humidity	85°C, 85%RH, 168 hours	40C, 90%RH, 168 hours
Stress Bias	45 - 50 Volts DC	5V (8 mil spacing) or 25V/mm
Pre-Bias Stabilization Period	3 hours at T&H	1 hour at T&H
Measurement Bias	-100 Volts DC	5V (8 mil spacing) or 25V/mm
Time of Readings	24, 96, 168 hours	At least once every 20 minutes
Control	>1E9 Ohms, 96 hours to end	>1E9 Ohms, 96 hours to end
SIR data	>1E8 Ohms @ 96, 168 hours	>1E8 Ohms @ All Measurments
Dendrites/Corrosion	None > 25% of spacing	None > 20% of spacing

SIR test coupons

B24

B52 (BY IPC 9201 1996, rev. 2007)

B52 Legacy boards (STI, Magnalytics

- closer to customer's situation today)

Limit for SIR

B52 cleaned

B52 half cleaned

Automotive- driven approach to SIR

SIR tests	Enhanced	J-STD 004 /
Minimum SIR requirement	5,000MOhms 5*E+10	100M0hms 1*E+9
Time	1,000 hours	168 hours
Spacing	0.2mm	0. 5mm
Voltage	10V, 50V	5V
SIR coupon	B52	B24

ιВ

Enhanced SIR testing requirements – high voltage

Automotive

500V

SIR after termal cycling

Temperature Cycling Parameters		
Profile	Dwell (Minutes)	Cycles Completed
-40°C to +125°C	5	~153
-55°C to +175°C	10	~535

New methods to verify reliability

Conventional Condensation testing

Dependent on mass of subject Not repeatable , weak definition Less dynamic

New – precise condensation test (NPL)

Pictures from National Physical Laboratory

Electro- chemical testing

Ion Chromatography IPC TM650 2.3.28

Water 80°C; 1 hr

Used thresholds (IPC 5704) these are not a universally valid common values !!!

Minimum Ionic Species	Micro Grams/Square inch	Micrograms/Square Centimeter
Bromide	<10 µg/in ²	<1.55 µg/cm²
Chloride	<6 µg/in²	<93 µg/cm ²
Fluoride	<3 µg/in ²	<47 µg/cm ²
Sulfate	<3 µg/in ²	<47 µg/cm ²
Phosphales	<7 µg/in ²	<1.09 µg/cm ²
Nitrates	<3 µg/in²	<47 µg/cm ²
Weak Organic Acids	<25 µg/in ²	<3.88 µg/cm ²

IPA/Diwater 75%25%

Anions - not specified in this standard

- FTIR indication of known material residues. Must be "teached".
- C3 (Critical cleanlinnes Control)
 - Local ionic contamionation analysis
 - Ion chromatography
- SEM + EDAX analysis
 - For very high magnification
 - Analysis of elements , not molecules

Foresite Inc.

STI inc.

Raman spectroscopy

Photon scattering due to absorbtion or energy transfer from the molecules gives information about molecule structure

Optical inspection of cleaned assemblies

How to look under components

• Components tearing

• Tilted wiew

• 90° wiew – endoscope

PBT Glass Test Board

PBT Glass Test Board optical tester

- Flux residues solubility testing
- SPC of cleaning process according to J-STD-001 Am.1, par. 8
- Validation of changes instead of ionic contamination measuring
- Cleaning process optimization
- Cleaning machine capability studies
- Cleaning process capability studies

GTB – test protocol

T:

LoCILit=1.0994 HiCILit=1.2373 LoCI=75.01 HiCI=77.51 MeanResp=76.28

Save

View

 \sim

х

Washing response measurement

©2019 PBT Works s.r.o.

Washing response measurement Cleanability Resistance Value (CRV) definition

©2019 PBT Works s.r.o.

• All pastes are cleanable, but big differencies in cleanability

Washing resistance – sorted; cleaner XY, t=50°C, conc= 20%

• All pastes are cleanable, but with big differencies

^{©2019} PBT Works s.r.o.

Washing resistance after 1 reflow x after 2 reflow - sorted

-500

Washing resistance after 1 reflow x after 2 reflow - sorted

-500

Freshly and aged cleaned flux residues

Freshly and aged cleaned flux residues

Interpretation of cleanability data

 On real boards (presency of metalo- carboxylic salts) white residues are generated

- Measuring cleanability (Washing resistence values) is an essential infor mation needed for every start of new project
- Proper flux / cleaner matching
 - Protects component from unnecessary chemical and moisture stress
 - Increases productivity of cleaning
 - Lowers chemistry and water consumption
 - Increases quality of cleanlinnes level
 - Saves costs

1. Measuring of cleaning field uniformity

• Two different machines with the same flux residues and same cleaner.

Machine capability studies

2. Measuring of Cpk

- Measuring of cleaning curve (10x)
 - Calculation of Cpk from cleanability resistence against customer expectation
- Measuring of repeated cleaning results
 - Proces with Glass Test Boards set for time, which gives about 50% of expected result (6,6 min)
 - Calculation of Cpk from results at nominal time (6,6 min)

Expectations (cleanability):

USL =	650
LSL =	330
Mean =	585 <i>,</i> 93
δ =	9,5051
Cpu = USL-M/ 3* δ = 2.24	
Cpl = M-LSL/3* δ = 8,97	

Cpk= 2,24

Comparison of cleaning proces with ADD / without ADD

Influence of automatic refilling

Essential for heavy-loaded processes, monitors dissoving speed, not only concentration !

Process monitoring (light loaded process)

• Process runs only on manual dosing of fixed concentration

Transport to assembly line

Cleaning line loading

Magazine in carrier

Line unloading

Cleaning in PCB magazines

High performance cleaning process

HyperSUASH

168 Eurocards

Automatic maintenance Data communication to MES Automatic loading/ unloading of material Configuration change – water ma

water management – by software

- spray configuration by factory maintenance

40 Eurocards

High performance cleaning process Automatic loading/ unloading

Parameter tracking

×

CORD VIEWER

- Cleaning proces
 - More important for future requirements
 - Clanlinnes testing moves to SIR and more sophisticated methods
 - Dedicated simulating with optical ionspection can speed- up cleaning project preparation

• State – of the art cleaning

- New cleaning machines must be capable to clean gaps under 25um.
 - Design must be supported by many studies of proces
- Cleaning is more a statistical control proces.
 - This requires more and new data from proces
- Quality demands require full automation.
 - Maintenance
 - Loading / unloading to exclude operator influence

New and innovative test methods are applied for quality control