

Dresden University of Technology / Electronics Packaging Laboratory

Through Silicon Vias Annealing: A thermo-mechanical assessment

P. Saettler⁽¹⁾, <u>K. J. Wolter⁽¹⁾</u>, M. Hecker⁽²⁾, M. Boettcher⁽³⁾ and C. Rudolph⁽³⁾

(1) Technische Universität Dresden, Electronics Packaging Laboratory (2) Globalfoundries Dresden Module One LLC & Co. KG (3) Fraunhofer IZM-ASSID

Bucuresti, October 24th 2014

Outline

Introduction:

• 2,5 and 3D Integration

Motivation:

TSV annealing aspects

• Annealing characterization:

- die warpage
- copper protrusion
- EBSD on TSVs

FEM and µ-Raman spectroscopy:

- Raman measurement
- validation of FE-results

slide 2

3D architecture including TSVs

💹 Fraunhofer

IZM - ASSID

Source: Yole 2012

26.10.2014

slide 3

TSV-Annealing: A thermo-mechanical assessment

Fraunhofer GLOBALFOUNDRIES IZM - ASSID

	several standard packages	2.5D SiP	3D SiP
Technology and infrastructure maturity	+	-	
Electrical bandwidth	-	+	++
Power consumption	-	+	+
Heterogeneous integration	-	+	+
Size	-	+	++
Thermal Management	++	+	-

Source: Yole 2012

GLOBALFOUNDRIES

Fraunhofer

IZM - ASSID

26.10.2014

slide 4

014 TSV-Annealing: A thermo-mechanical assessment

Introduction:2,5D Integration

Source: Yole 2012

Fraunhofer

IZM - ASSID

26.10.2014

slide 5

TSV-Annealing: A thermo-mechanical assessment

GLOBALFOUNDRIES

Introduction: 2,5D und 3D Integration

Source: Yole Polymeric materials 2012

Fraunhofer

IZM - ASSID

26.10.2014

TSV-Annealing: A thermo-mechanical assessment

slide 6

Introduction:TSV - dimensions

Typical diameters: 5-20 µm Aspect ratio: up to 1:10 Isolation (SiO₂) 400 nm Barrier-Layer (Ta/TaN) respectively 80 nm Seed-Layer (Cu) 600 nm Etched Si (Bosch process)

unfilled TSVs (d=5µm)

[Laviron et al., ECTC, 2009]

Cu-filled TSVs (*d*=20µm)

[Wolf et al., ESTC, 2010]

Slide 7 TSV-Annealing: A thermo-mechanical assessment

Moore's Law vs. More-Than-Moore

slide 8

a) Via first TSV->Thinning-> CMOS

b) Via middle CMOS->TSV->Thinning c) Via last CMOS->Thinning->TSV

Source: Yole 2012

TSV-Annealing: A thermo-mechanical assessment

Motivation:

TSV annealing aspects

Annealing characterization:

- die warpage
- copper protrusion
- EBSD on TSVs
- FEM and µ-Raman spectroscopy:
 - Raman measurement
 - validation of FE-results

3D architecture including TSVs

26.10.2014

slide 10

Motivation: Copper Protrusion

annealing (0,5h/450°C)

oxide

Motivation: stresses caused by TSV fabrication

proof of hypothesis by experiment and simulation

- perform annealing with supplementary characterization
- search for increased warpage, protrusion and grain growth indicating coppers annealing behavior
- measure stresses using Raman spectroscopy

- implement simulation model using hypothesis assumptions
- stress free at annealing temperature
- cool down to room temperature as thermal load

compare measured and calculated stresses

26.10.2014

slide 14

TSV-Annealing: A thermo-mechanical assessment

Electronics Packaging Laboratory

• Annealing characterization:

- die warpage
- copper protrusion
- EBSD on TSVs

FEM and µ-Raman spectroscopy:

- Raman measurement
- validation of FE-results

3D architecture including TSVs

26.10.2014

slide 15

SEM image of the examined TSV structures

die samples:

- 3 cm x 3 cm x 700 µm
- samples taken after copper fill and overburden CMP (unthinned die)
- 600 nm SiO₂ on top
- TSV-pitch 55 µm
- experimental:
 - annealing conditions:
 - T: 250 °C
 - t: 2 h
- measurement:
 - warpage
 - grain structure
 - copper protrusion
 - µRS

26.10.2014

slide 16

A therm

TSV-Annealing: A thermo-mechanical assessment

measurement of die warpage:

measurement of copper protrusion:

height map of a TSV's copper protrusion

- confocal microscopy
- creation of height maps
- evaluation of TSV profiles average heights

height profile and measured copper protrusion

→ copper protrusion: 61 ± 4 nm in average

26.10.2014

slide 18

TSV-Annealing: A thermo-mechanical assessment

Fraunhofer

TU-Dresden

Electron BackScatter Diffraktion – experimental arrangement and functional principle:

- Sample with an angle of 70° inside the SEM
- Incident electron beam scatters inelastic on lattice atoms
- Bragg conditions → constructive interference (diffraction pattern Kikuchi-pattern)
- CCD camera records pattern from phosphorus screen

26.10.2014

slide 19

TSV-Annealing: A thermo-mechanical assessment

comparison of grain structures after 4 h annealing:

\rightarrow annealing above recrystallization temperature creates grain growth

26.10.2014

slide 20

TSV-Annealing: A thermo-mechanical assessment

comparison of grain size distributions:

 → initiated grain growth
→ only marginal grain size changes measured → additional evaluation of twin boundaries as crystallographic defects

26.10.2014

slide 21

TSV-Annealing: A thermo-mechanical assessment

5 µm

- Misorientations between grains / twin boundaries:
 - CSL coincident site lattice
 - CSL boundary some of the atoms in two crystal lattices separated by the boundary are coincident
 - typical twin boundaries of copper:

Σ Type	Angle	Axis
Σ3	60°	111
Σ9	38.94°	110
Σ 27 a	31.59°	110
Σ 27b	35.43°	210

slide 22

w/o annealing

TSV-Annealing: A thermo-mechanical assessment

Misorientations between grains / twin boundaries:

GLOBALFOUNDRIES

FEM and µ-Raman spectroscopy:

- Raman measurement
- validation of FE-results

3D architecture including TSVs

Fraunhofer

IZM - ASSID

26.10.2014

slide 24

TSV-Annealing: A thermo-mechanical assessment

Raman spectroscopy for stress measurement:

- strains effect Raman peaks
- → uniaxial stress model: positive shift - compression negative shift - tension
- <u>BUT</u>: peak position is dependent on all strain tensor elements
- → general stress calculation rule needed
- conversion of strains into Raman Shifts:

 $\begin{vmatrix} p\varepsilon_{11} + q(\varepsilon_{22} + \varepsilon_{33}) - \lambda & 2r\varepsilon_{12} & 2r\varepsilon_{13} \\ 2r\varepsilon_{12} & p\varepsilon_{22} + q(\varepsilon_{33} + \varepsilon_{11}) - \lambda & 2r\varepsilon_{23} \\ 2r\varepsilon_{13} & 2r\varepsilon_{23} & p\varepsilon_{33} + q(\varepsilon_{11} + \varepsilon_{22}) - \lambda \end{vmatrix} = 0 \qquad \Delta \omega = \omega - \omega_0 = \frac{\lambda}{2 \cdot \omega_0}$ $\begin{bmatrix} de \text{ Wolf., Semicond. Sci. Technol. 11 (1996)} \end{bmatrix}$ $\begin{bmatrix} 26.10.2014 \\ slide 25 \end{bmatrix} \qquad \begin{array}{c} \text{TSV-Annealing:} \\ \text{A thermo-mechanical} \\ assessment \end{bmatrix} \qquad \begin{array}{c} \text{Electronics} \\ \text{Packaging} \\ \text{Laboratory} \end{bmatrix} \qquad \begin{array}{c} \text{Fraunhofer} \\ \text{IZM - ASSID} \end{array} \qquad \begin{array}{c} \text{GLOBALFOUNDRIES} \\ \text{GLOBALFOUNDRIES} \\ \end{array}$

µRS measurement:

→ tension fades with increasing distance to the TSV

- line scans on the substrate surface over TSVs
- step size 100 nm
- laser wavelength 442 nm
- spot size 1 µm

Laboratory

.....

penetration depth 240 nm

IZM - ASSID

26.10.2014

slide 26

TSV-Annealing: A thermo-mechanical assessment

material	Cu	SiO ₂	Si [100]
deposition	ECD	TEOS	-
Young's modulus [GPa]	121	71.4	168
TCE [10-6/K]	-380	240	-60
Poisson ratio [-]	0.3	0.16	0.22
CTE [10 ⁻⁶ /K]	17.3	0.5	2.8
modeling	elastic-plastic	elastic	elastic

copper:

- stress free at 250 °C
- thermal load: cool down to room temperature

26.10.2014

slide 27

TSV-Annealing: A thermo-mechanical assessment

results of simulation and measurement:

- annealing at 250 °C for 2h increases warpage and copper protrusion associated with changes in copper crystal structure
- → copper protrusion emerges as a stress relief above recrystallization temperature and as consequence of coppers annealing behavior
- → annealing achieves the decrease of crystallographic defects
- \rightarrow annealing causes additional mechanical stress
- Raman spectroscopy + FEM confirm warpage and protrusion measurements
- \rightarrow stress distribution in silicon is complex
- → taking the right boundary conditions into account delivers a good match of simulation and measurement

slide 29

Dresden University of Technology / Electronics Packaging Laboratory

Thanks for your attention!