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MINATEC : 20 hectares 

MINATEC on the scientific polygone  
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Harry Veendrick IEDM 2009 Short Course • 

 Low Power / Low Energy Circuits: From Device to System Aspects 
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Why less power?      TOMORROW  

 

J. Rabaey, ASPDAC 2008  
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Unfortunately the power density is not 
decreasing with  CMOS scaling  
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• CMOS: basic elements… 

• Power dissipation: static power and dynamic power 

• Power optimization at component and circuit level 

• Interest of nanotechnologies for energy efficiency  

• Adiabatic and reversible computing 

 

OUTLINE   
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The microelectronic scaling principle 
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The MOS transistor is a nanocomponent 

is
o
la

tio
n

is
o
la

tio
n

W

L

source drain

grille

is
o
la

tio
n

is
o
la

tio
n

W

L

source drain

grilleGate 



 13 

 TGSsatOXon VVvCWI 

• The  Ion  current (short channel) 

Basic FET model 

n

D

th

V

V

nV

V

off

C

C
n

q

kT
V

WkI th

DS

th

T























1

exp1exp

• The Ioff   current 

Strong effect of 

threshold voltage 

Tunnel current in 

addition 

The body effect factor 

The thermal voltage (25 mV at room temperature ) 

ecapacitancdepletion    D

OXn

C

CWLC 



 14 

Importance of Ion et Ioff 

• Ioff  defines leakage power consumption 

 

• Ion  defines speed of the circuit 

Charging time of the output capacitance 

 

 

 Trade-off  between speed and consumption 
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Now systems are switch based systems 
Inverter is the basic element VDD
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• CMOS: basic elements… 

• Power dissipation: static power and dynamic power 

• Power optimization at component and circuit level 

• Interest of nanotechnologies for energy efficiency  

• Adiabatic and reversible computing 
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How to reduce leakage  power 
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To eliminate tunnel 

effects To increase the 

threshold voltage 

To decrease  n  
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for circuit or blocks  

The subthreshold 
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2
    DDdyn VCfNP 

How to reduce dynamic power 

To increase 

parallelism 

To reduce 

interconnect 

To decrease 

supply voltage 
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• CMOS: basic elements… 

• Power dissipation: static power and dynamic power 
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• Adiabatic and reversible computing 

 

OUTLINE   



 23 

Parallelism is an efficient solution 

Today advanced architectures use parallelism but 

parallelism has limitations 

Is it possible to reduce the operating frequency ? 
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It is not  easy to reduce supply voltage… 

Is it possible to reduce the supply voltage ? 
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How to reduce supply voltage, the limits 

1 Trade-off speed-dissipation 

 

2  Variability and design constraints 

 

3 Cascadability of gates  

 

4 Thermodynamic limit 



 27 

2lnTkE B

mE
L

2




• Boltzmann + Shannon : Minimum switching energy 

 

 

• Heisenberg : Minimum channel length 

 

 

 

• With tunnel effect (Zhirnov-Cavin) 

 

 

 

 

 
2

22

8

2ln
2ln

mL
TkE B


 

4 The fundamental limits  
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What is the minimum value of VDD- summary  

• Trade-off Speed-Power  

200-700 mV (less if low frequency operation) 

• Variability and design constraints 

 100-300 mV 

• Cascability of devices 

 20-50 mV 

• Fundamental limits 

  Below 20 mV towards 2 mV 
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Planar FDSOI and FinFET are solutions 
for today    

Planar  FinFET  

FD SOI transistor 
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After FinFET and FDSOI   
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Interest of steep slope devices ? 

 
Prof. Tsu-Jae King Liu  

Workshop on Zero power technologies for Autonomous Smart Systems  
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Interest of steep slope devices/ the Tunnel 
FET 
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Interest of steep slope devices/ the 
nanomechanical relay 

 
Prof. Tsu-Jae King Liu  

Workshop on Zero power technologies for Autonomous Smart Systems  
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 Low Power / Low Energy Circuits: From Device to System Aspects 

Optimization at system level 
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Interest of 3D and heterogeneous 
technologies 
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• CMOS: what is necessary to know… 

• Power dissipation: static power and dynamic power 

• Power optimization at component and circuit level 

• Power dissipation at architecture level 

• Adiabatic and reversible computing 
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Adiabatic logic Reversible logic 

How to charge and discharge a 
capacitance with minimum 
energy dissipation 

 

To work at constant current 

How to take into account the 
Landauer principle in order to 
minimize energy dissipation 

 

To use only reversible logic 
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An example of a reversible gate: the Fredkin 

Gate 

An example of non reversible gate Impossible to guess 

inputs from outputs 
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The adiabatic charge of a capacitance 

C 

VDD Not an abrupt variation but a linear variation is 

applied to the capacitor 

If RC  is small compared to the duration T of 

the ramp, charge-discharge currents  and Joule 

dissipation are reduced by RC/T 

 

RC/T small RC/T very small 
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Foundries 

Integrated Device  
Manufacturers 

Source IBS – IDMs - ** IBS fait la supposition que la partie manufacturing d’IBM sera absorbée par Global Foundries 

Nanoelectronics is not only a technical issue 
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• Energy efficiency is the main nanoelecronic driver… 

• Many improvements at circuit level 

• New switches (Tunnel FET and NEMS) have to be 

confirmed for future ultra low power electronics but FDSOI 

and FinFETs are  solutions for today 

• Long term solutions are not defined 

• Adiabatic logic in association  with new switches has to be 

investigated 

 

Conclusions   
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• Low power electronics design 
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